Публикация пресс-релизов Поиск по компании
Решения, технологии, стандарты Рынок, отрасль, люди Основы
Отменить подписку Подписка
Производители Системные интеграторы Дистрибьюторы
Продукты месяца Поиск по категории Добавить продукт
Добавить мероприятие
Добавить вакансию Специалисты по АСУ ТП, КИП Специалисты по электротехнике, энергетике Главные инженеры, технологи, электрики Менеджеры по продажам, консультанты, другое
Технические требования Публикация статей Публикация пресс-релизов Media Kit 2014
Перейти:  
 


 

Основы АСУ ТП и КИП - в статьях Ua.Automation.com

Инкрементальный или абсолютный датчик положения?

Инкрементальный или абсолютный датчик положения?

Даррен Крейт (Darran Kreit), Zettlex, для Automation.com

Большинство инженеров при решении задач определения положения по-прежнему используют инкрементальные датчики положения. Отчасти это происходит из-за преобладающего убеждения в том, что абсолютные датчики положения слишком сложны и дорогостоящи. В данной статье описываются оба подхода и относительные преимущества каждого из них.

Понимание разницы между инкрементальными и абсолютными техниками измерения, порой, оказывается нетривиальной задачей. Помимо необходимости разбираться в терминологии, связанной с определением положения, инженерам приходится иметь дело с порой противоречивыми заявлениями от производителей, которые, нет-нет, да и заявят, что тот или иной продукт является абсолютным датчиком положения – хотя, на самом деле, он инкрементальный.

В этой статье мы используем термин «датчик» как собирательный для энкодеров, преобразователей и детекторов.

Определения: инкрементальный и абсолютный

Основной особенностью инкрементального датчика положения является то, что он сообщает о величине изменения положения. Другими словами, после того, как на датчик подается питание, он не сможет сообщить о положении до тех пор, пока ему не дадут точку отсчета.

Абсолютный датчик положения генерирует однозначную информацию о своем положении, с помощью специальной шкалы. Когда на датчик подается питание, он сообщит о своем положении, и ему для этого не нужна точка отсчета. «Что произойдет при подаче напряжения?» - ответ на это вопрос является хорошим тестом для различения двух типов датчиков. Если датчику нужна какая-то калибровка – это инкрементальный датчик. Если нет – это абсолютный датчик.

Некоторые производители датчиков заявляют об «абсолютном» функционале своих продуктов, на том основании, что аккумуляторная батарея позволяет хранить информацию о положении, когда питание инкрементального датчика отключается или пропадает. Но, что произойдет, когда батарея будет разряжена?

Другие производители заявляют об «абсолютном» функционале своих инкрементальных датчиков, потому, что им надо совсем немного энергии, для того, чтобы получить точку отсчета. Все равно, это – инкрементальные датчики, хотя их и продают как абсолютные – с соответствующими ценами.

Потенциометры: проблемы износа и надежности

Хотя основанные на потенциометрах датчики положения все еще являются самым обыкновенным их типом, за последние 30 лет значительное распространение получили бесконтактные датчики. Этот тренд порожден проблемами, связанными с износом и надежностью потенциометров – особенно в жестких условиях (прежде всего связанных с вибрацией) или при долгих сроках службы.

Почти все потенциометры являются абсолютными, однако обычной формой бесконтактных датчиков являются оптические энкодеры. Их принцип работы основан на использовании луча света, направленного сквозь или на специальную решетку. Положение вычисляется исходя из интенсивности отраженного или преломленного света. Большинство оптических устройств являются инкрементальными. Положение определяется с помощью серии так называемых А/В импульсов.  Также есть канал Z, дающий один импульс на оборот, в качестве референса.

Абсолютные оптические устройства схожи, но используют другой тип шкалы, где абсолютная позиция определяется при подключении питания – без необходимости в точке отсчета. Как правило, у этих датчиков цифровой выход, и разрешение определяется количеством битов в выходном сигнале. 10-битные устройства могут предоставить 1024 отсчета, 11-битные – 2048 отсчетов и т.д.

Сейчас продается в три раза больше инкрементальных датчиков, чем абсолютных. Основная причина – инкрементальные датчики, как правило, дешевле абсолютных, при сравнимых характеристиках.

Однако, сегодня абсолютные датчики не так дороги, как многие продолжают считать. Переход к (бесконтактным) абсолютным изменениям положения может существенно улучшить производительность, повысить точность и снизить общие расходы. Это связано с тем, что с инкрементальными датчиками связан ряд технических проблем.

Самая очевидная заключается в том, что каждый раз при отключении питания понадобится калибровка – это замедляет производственные процессы, а также может иметь последствия, связанные с безопасностью, если питание пропало неожиданно.

Во-вторых, положение определяется с помощью точки отсчета. В некоторых случаях  особенно при изменении напряжения или быстрых изменениях положения – могут произойти нарушения в процессе отсчета. Это может иметь разрушительное воздействие на производственный процесс, причем, это будет обнаружено не сразу (например, рассинхронизация производственных операций). Большинство инкрементальных датчиков являются оптическими, и для получения данных с большим разрешением, характеристики оптических элементов, прежде всего, решетки, должны быть очень высоки: ее период должен измеряться буквально в пределах микронов. Хотя это повышает чувствительность, однако, означает и повышенную уязвимость к внешним факторам – влага, жир, грязь могут остановить работу, или, что хуже, сделать показания неверными.

Разница в цене между абсолютными и инкрементальными датчиками сокращается, частично из-за постепенного распространения абсолютных датчиков, и, главное – из-за внедрения новых технологий для абсолютных датчиков. Конечно, оптические датчики по-прежнему остаются «устройствами выбора» для большинства инженеров, однако  индукционные устройства нового поколения позволяют создавать точные абсолютные датчики положения, устойчивые к жестким условиям внешней среды.

Вместо решетки и оптического сенсора, в этих индуктивных датчиках положения используются плоские, печатные катушки индуктивности, чьи основные принципы функционирования напоминают таковые, к примеру, у датчиков угла поворота. С помощью этих катушек можно создавать компактные, легкие, абсолютные датчики с высоким разрешением, не зависящие от сложных оптических устройств. Эти датчики действительно абсолютные, и обладают большими преимуществами по сравнению с оптическими. Во-первых, на них не воздействуют загрязнения или влага. Во-вторых, на их измерительные способности, как правило, не влияют смещения или недостаточно точный монтаж. А это означает, что этим датчикам не нужно сверхточное крепление, и их очень просто крепить к частям механизмов. Это радикально упрощает автоматизацию, уменьшает размеры и вес конструкции.  В общем и целом, индуктивные абсолютные датчики положения позволяют решать задачи определения положения с расходами, сравнимыми с традиционными инкрементальными датчиками.