Публикация пресс-релизов Поиск по компании
Решения, технологии, стандарты Рынок, отрасль, люди Основы
Отменить подписку Подписка
Производители Системные интеграторы Дистрибьюторы
Продукты месяца Поиск по категории Добавить продукт
Добавить мероприятие
Добавить вакансию Специалисты по АСУ ТП, КИП Специалисты по электротехнике, энергетике Главные инженеры, технологи, электрики Менеджеры по продажам, консультанты, другое
Технические требования Публикация статей Публикация пресс-релизов Media Kit 2014
Перейти:  
 


 

Основы АСУ ТП и КИП - в статьях Ua.Automation.com

Датчики. Как оценить их точность?

Датчики. Как оценить их точность?
Декабрь 2012 
 
Датчики имеют критически важное значение для правильного управления процессами, что зачастую не учитывается при модернизации существующих систем. Точность датчиков должна быть тщательно проверена, иначе всякая модернизация теряет смысл.
 
Многие производители оборудования обещают простое, как «дважды два», включение заменяемых модулей системы, которые не требуют замены существующих сетей, проводки, системных корпусов и источников питания, и при этом сокращение времени простоя с недель и месяцев до «дня и меньше».
 
Эффективность датчиков
 
На самом деле все обстоит немного по-другому. Обновление систем для достижения более высокого уровня управления предприятием при помощи компьютеров и программного обеспечения, без оценки эффективности датчиков, которые снабжают эти системы данными, является бесполезным занятием. Чтобы правильно воспринимать и передавать данные технологических параметров, датчики должны быть точными.
 
Датчики давления
 
Точность датчиков давления, составляет, как правило, от 0,25% диапазона измеряемого давления. Для сценариев применения с менее строгими требованиями, точность может быть примерно в районе 1,25% диапазона.
 
Точность датчика давления зависит от того, насколько хорошо датчик откалиброван и как долго он может сохранять эту калибровку. Первоначальная калибровка промышленных датчиков давления на калибровочной станции достигается путем применения постоянного источника давления, например, дедвейт тестера. После того, как датчик давления установлен, его точность может быть оценена с учетом влияния на первоначальную точность калибровки воздействия окружающей среды, воздействия статического давления и др.
 
Автоматизированные системы калибровки работают с помощью программируемого источника давления для производства заданных сигналов давления, применяемых к датчику, который должен быть откалиброван. Вначале записываются показания датчика до калибровки. Далее датчик тестируется с увеличением и уменьшением входных сигналов для учета любого появления эффекта гистерезиса. Затем система сравнивает полученные данные с критериями приемлемости калибровки для датчиков давления и автоматически определяет, должен ли датчик быть откалиброван. Если это так, система обеспечивает необходимые сигналы к датчику, чтобы откалибровать его и держит входное значение постоянным на протяжении промежутка, пока вносятся корректировки, и низшее давление, на котором он должен быть откалиброван. После этого система выдает отчет, который включает в себя данные до и после калибровки и сохраняет их для анализа тенденций и обнаружения зарождающегося отказа.
 
Датчики температуры
 
Типичный вид промышленных датчиков температуры, термометр сопротивления (ТС), как правило, не достигает точности более 0,05 - 0,12°C при 300°C, при этом, обычно, требуется обеспечить точность более чем 0,1°С при 400°C. Процесс установки термометров сопротивления также может приводить к дополнительным ошибкам в точности. Другой распространенный вид датчика температуры, термопара, как правило, не может обеспечить точность лучше, чем 0,5°C при температурах до 400°C. Чем выше температура, тем меньшую точность термопары обычно можно достичь.
 
Калибровка термометров сопротивления
 
Точность датчика температуры устанавливается путем калибровки, сравнивая его показания с универсальной калибровочной таблицей или индивидуальной калибровкой в высокоточной среде. ТС, в отличие от термопары, могут быть «очищены» и перекалиброваны после установки. Промышленные датчики температуры, как правило, калибруются в резервуарах со льдом, водой, маслом или песком, а также в печи, или путем комбинирования этих методов. Тип калибровочного резервуара зависит от выбранного температурного диапазона, требований к точности и от применения датчиков. Процесс калибровки обычно включает в себя измерение температуры калибровочного резервуара с использованием стандартного термометра. Для индивидуально калиброванных ТС, точность обеспечивает процесс калибровки, который в свою очередь зависит от точности оборудования, используемого для калибровки, а также ошибок, таких как гистерезис, самонагревание, интерполяция и ошибки при монтаже.
  
Калибровка термопары
 
Если ТС может быть перекалиброван и после установки, то термопара – нет. Термопару, которая потеряла свою калибровку, следует заменить. Промышленные термопары обычно не калибруются индивидуально. Вместо этого, их показания сравниваются со стандартными справочными таблицами. Для калибровки используются, как правило, один из двух методов: метод сличения (в котором ЭДС термопары сравнивается с эталонным датчиком) или метод фиксированной точки (ЭДС термопары измеряется в нескольких установленных состояниях). При оценке точности датчика температуры, важно учитывать не только калибровку самого датчика, но также влияние установки датчика и условий технологического процесса на эту точность.
 
Датчики. Как оценить время отклика?
 
Для отображения данных с частотой в соответствии с требованиями установки или отраслевыми нормами, датчики должны быть достаточно быстрыми в выявлении резкого изменения значения параметров процесса. Точность и время отклика по большей части являются независимыми друг от друга показателями. Так как оперативность датчиков имеет важнейшее значение для производственных систем, работы по модернизации систем должны начинаться с ее тщательной оценки, наряду с оценкой точности и надежности датчиков.
 
В то время, как точность датчика может быть восстановлена путем повторной калибровки, время отклика является неотъемлемой характеристикой, которая обычно не может быть изменена после изготовления датчика. Два основных метода для оценки времени отклика датчиков, это тест погружения (для датчиков температуры) и линейный тест (для датчиков давления).
 
Калибровка и время отклика  датчиков,  в особенности датчиков температуры, зависит в большой степени от условий технологического процесса, в том числе статического давления, температуры процесса, температуры окружающей среды и скорости потока жидкости.
 
Проверка без отрыва от производства
 
Существуют некоторые методы, которые часто упоминаются как тестирование на месте или он-лайн тестирование. Они были разработаны для проверки калибровки и времени отклика датчиков, уже используемых в каком-либо процессе. Для датчиков температуры, тест LCSR (Loop Current Step Response) будет проверять динамические характеристики наиболее распространенных датчиков температуры – термопар и термометров сопротивления – там, где они установлены в операционном процессе. Метод LCSR показывает фактическое время отклика ТС (термометра сопротивления) «в процессе эксплуатации».
 
В отличие от термометров сопротивления и термопар, время отклика датчиков давления, уровня и расхода обычно не изменяется после установки. Это потому, что эти датчики являются электромеханическими устройствами, которые работают независимо от температуры окружающей среды и температуры процесса. Трудность в оценке датчиков давления связана с наличием системы процесс – провод – сенсорный интерфейс, которая соединяет датчик с фактическим процессом. Эти измерительные линии (провода) добавляют несколько миллисекунд задержки времени отклика датчиков. Хотя эта задержка незначительна, гидравлические задержки могут добавить десятки миллисекунд времени отклика для измерения давления системы.
 
Методика анализа шума позволяет измерять время отклика датчиков давления и измерительных линий в одном тесте. Как и в методе LCSR, техника анализа шума не мешает эксплуатации, использует существующие выходы датчиков для определения их времени отклика, и может быть выполнена удаленно для датчиков, которые установлены на производстве. Методика анализа шума основана на принципе контроля нормального выхода переменного тока датчиков давления с помощью быстрой системы сбора данных (частота от 1 кГц). Переменный ток на выходе датчика, который называется «шум», производится случайным колебаниями в процессе, связанными с турбулентностью, вибрацией и другими естественными явлениями. Так как эти посторонние шумы происходят на более высоких частотах, чем динамический отклик датчиков давления, они могут быть выделены из сигнала с помощью низкочастотной фильтрации. Как только сигнал переменного тока или шум отделяется от сигнала постоянного тока с использованием оборудования обработки сигнала, сигнал переменного тока усиливается, передается через сглаживающую фильтрацию, оцифровывается и хранится для последующего анализа. Этот анализ дает динамическое время реакции датчика давления и измерительных линий.
 
Существует ряд оборудования для сбора и анализа данных об уровне шума для датчиков давления. Коммерческое оборудование для спектрального анализа может собирать данные шумы и выполнять анализ в реальном времени, но это оборудование обычно не в состоянии справиться с множеством алгоритмов анализа данных, необходимых для получения результатов с точным временем отклика. Именно поэтому системы сбора данных на базе ПК, состоящие из изолированных узлов, усилителей и фильтров для формирования сигнала и его сглаживания, часто являются оптимальным выбором для сбора данных шумов и их анализа.
 
Срок службы датчиков
 
Когда следует заменять датчики? Ответ прост: заменять датчики следует по истечению срока службы, установленного производителем на указанный продукт, например 20 лет. Однако, это может быть очень дорого и нецелесообразно.
 
В качестве альтернативы можно продолжать использовать датчики после истечения их срока службы, но обязательно использовать системы отслеживания производительности датчика, чтобы определять надобность замены датчика и когда это следует сделать. Опыт показал, что высококачественные датчики с большой долей вероятности будут продолжать показывать хорошие результаты работы далеко за пределами диапазона службы, очерченного производителем. Консенсус между заводскими рекомендациями и реальным использованием датчиков может быть достигнут путем эксплуатации последних до тех пор, пока стабильность калибровки является приемлемой и его время отклика не уменьшается.
 
Многие шутят, что датчики, которые работают правильно надо «оставить в покое», а высококачественные датчики «в возрасте» вполне могут быть так же хороши, если не лучше, чем новые датчики той же модели и того же производителя.
 
Автор: X. Хашемьян (H. M. Hashemian), для InTech